일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
Tags
- AWS
- data analyze
- algorithm
- Scrum
- keras
- tensorflow
- 애자일
- adaptive life cycle
- angular
- DANAWA
- 자바스크립트
- opencv
- 크롤링
- 다나와
- Project
- Method
- ECS
- 프로젝트
- data
- visualizing
- pandas
- analyzing
- webcrawling
- Agile
- python
- Crawling
- instance
- javascript
- matplotlib
- TypeScript
Archives
- Today
- Total
LiJell's 성장기
Tranfer_Learning 본문
반응형
Dogs vs. Cats
- Google Colab 사용
- Runtime에서 TPU 사용 추천
- Dogs vs Cats dataset
- https://www.kaggle.com/c/dogs-vs-cats/data
- 25000 images (12500 cats and 12500 dogs)
- Create dataset
- Training: 1000 samples for each class
- Validation: 500 samples for each class
- Test: 500 samples for each class
Training a convnet from scratch on a small dataset
Prepare dataset
import os, shutil
original_db_dir = './train'
base_dir = './cats_and_dogs_small'
os.mkdir(base_dir)
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)
frames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(train_cats_dir, fname)
shutil.copyfile(src,dst)
frames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(validation_cats_dir, fname)
shutil.copyfile(src,dst)
frames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(test_cats_dir, fname)
shutil.copyfile(src,dst)
frames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(train_dogs_dir, fname)
shutil.copyfile(src,dst)
frames = ['dog.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(validation_dogs_dir, fname)
shutil.copyfile(src,dst)
frames = ['dog.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in frames:
src = os.path.join(original_db_dir, fname)
dst = os.path.join(test_dogs_dir, fname)
shutil.copyfile(src,dst)
Create Neural Network
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from keras import models
model = models.Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(150,150,3)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
from keras import optimizers
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
- 문제 유형마다 함수가 어느정도 정해져있음
Data Preprocessing
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150,150),
batch_size=20,
class_mode='binary'
)
- ImageDataGenerator 클래스는 디스크에 있는 이미지 파일을 읽어 전처리 된 배치 텐서로 자동으로 바꾸어 주는 파이썬 제너레이터를 만들어 줌
for data_batch, labels_batch in train_generator:
print('배치 데이터 크기:', data_batch.shape)
print('배치 레이블 크기:', labels_batch.shape)
break
'''
배치 데이터 크기: (20, 150, 150, 3)
배치 레이블 크기: (20,)
'''
history = model.fit_generator( # 배치 제너레이터를 사용하여 모델 훈련
train_generator,
steps_per_epoch=100,
epochs=30,
validation_data=validation_generator,
validation_steps=50
)
model.save('/content/drive/MyDrive/tensflow/cats_and_dogs_small_1.h5') # 모델 저장
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
Data Augmentation
- 성능 향상을 위해 원래 데이터에 랜덤변환을 적용하여 부풀림
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.1,
zoom_range=0.1,
horizontal_flip=True,
fill_mode='nearest'
)
from keras.preprocessing import image
fnames = sorted([os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)])
img_path = fnames[3] # 증식할 이미지 선택
img = image.load_img(img_path, target_size=(150,150)) # 이미지를 읽고 크기 변경
x = image.img_to_array(img) # (150,150,3) 크기의 numpy 배열로 변환
x = x.reshape((1,)+x.shape) # (1,150,150,3) 크기로 변환
i=0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i%4 == 0:
break
plt.show()
model = models.Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(150,150,3)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(128, (3,3), activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
from tensorflow.keras import optimizers
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
)
test_datagen = ImageDataGenerator(rescale=1./255) # 검증 데이터는 증식되민 안됨
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150,150),
batch_size=32,
class_mode='binary'
)
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150,150),
batch_size=32,
class_mode='binary'
)
'''
Found 2000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
'''
history = model.fit_generator( # 배치 제너레이터를 사용하여 모델 훈련
train_generator,
steps_per_epoch=50,
epochs=300,
validation_data=validation_generator,
validation_steps=50
)
# 마운드한 구글 드라이브에 저장
model.save('/content/drive/MyDrive/tensflow/cats_and_dogs_small_2.h5')
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
반응형
'Bigdata > TensorFlow' 카테고리의 다른 글
Convnet Visualization (0) | 2022.03.14 |
---|---|
Transfer Learning II (0) | 2022.03.10 |
CNN for MNIST (0) | 2022.03.07 |
Convolution Neural Network (CNN) (0) | 2022.03.07 |
Neural Network (0) | 2022.03.04 |
Comments